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Abstract. We have developed approximate expressions for the aperture-averaging factor 

of optical scintillation in the turbulent atmosphere. For large apertures and weak path- 

integrated turbulence with small inner scale, the variance of signal fluctuations is propor

tional to the -7/3 power of the ratio of the aperture diameter to the Fresnel zone size. If 

the inner scale is large, the variance is proportional to the -7/3 power of the ratio of the 

aperture diameter to the inner scale. In strong, path-integrated turbulence, two scales de

velop. That portion of the variance associated with the smaller scale is proportional to the 

-2 power of the ratio of the aperture diameter to the phase coherence length. That por

tion of the variance associated with the larger scale is proportional to the -7/3 power of 

the ratio of the aperture diameter to the scattering disk. These simple approximations are 

within a factor of 2 of the measurements. The probability density function is nearly log 

normal under most conditions.
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1. INTRODUCTION
As light propagates through the atmosphere, it is randomly scattered by refractive tur

bulence inhomogeneities. At some distance from the source, an irradiance pattern is pro
duced that is random in both space and time. An optical receiver with a very small aper
ture will produce a random signal. If the aperture is larger than the spatial scale of the 
irradiance fluctuations, the receiver will average fluctuations over the aperture, and the 
signal fluctuations will be less than those from a point receiver. We define the aperture
averaging factor A as the ratio of the signal fluctuations from a receiver with aperture di
ameter D to those from a receiver with an infinitesimally small aperture.

Fried,1 following a development by Thtarskii,2 presented a formula for the aperture
averaging factor in the general case. This same formula was also derived in Refs. 3-5. 
Fried concluded that the averaging factor is proportional to the inverse square of aper
ture diameter for large apertures in weak turbulence. This conclusion was based on incor
rect numerical calculations, and the correct -7/3 power dependence was obtained.6 Note 
that the inverse square law was also obtained,4 based on an incorrect form for the ir
radiance covariance function. Approximations for the weak turbulence case were given 
for several geometries.7-10

Early experiments compared measured aperture-averaging factors with the weak-tur- 
bulence theory and found very poor agreement.1112 At the time, the phenomenon of satu
ration of scintillation was not understood, and these results were probably not in the 
weak-turbulence regime. Later experiments that were clearly in the weak-turbulence re
gime showed much better agreement.13’14

No good theory exists for the strong-turbulence regime. Gracheva and Gurvich3 used 
measured covariance functions to obtain numerical estimates of the aperture-averaging 
factor for those cases. They concluded that there was generally less aperture averaging in 
strong turbulence than one would expect from the weak-turbulence theory. This is in 
qualitative agreement with the results of Refs. 11 and 12. A later series of measurements, 
intentionally made in strong turbulence, also showed less aperture averaging in strong 
turbulence.15

In this report we first review the theory for aperture averaging in weak turbulence.
The theory for large values of the inner scale of turbulence, which has not been reported 
in the literature, is also included. We then develop the theory for strong turbulence using 
asymptotic formulas of the covariance function. In all cases, the emphasis is on simple ap
proximations rather than extremely precise, multiple-integral expressions. These formulas 
are then compared with experimental results.

2. THEORY
The general form of the aperture-averaging factor for a circular aperture of diameter 

Dis1
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(1)A = 16
nD2

where Cj(q) is the covariance function of irradiance, C/(0) is the variance of irradiance, 
and the quantity within the square brackets is the area of overlap of two circles of diame
ter D whose centers are located a distance g apart. A simple change of variable yields an 
equation that is simpler to work with,

A = — f ^[cos-V-y( 1 -y2)172^ • (2)71 0 0(0)

2.1 Weak TUrbulence
We define weak turbulence as the condition when the transverse coherence length of 

the field in the receiver plane is much larger than the Fresnel zone size. Under these con
ditions, the standard deviation of the irradiance fluctuations will be much less than the 
mean irradiance, and the fluctuations will have a lognormal distribution. The covariance 
function is given by.16

oo ^Oto) = 16JT?k2j dK K<Pn(K)f dz J0(Kqs) sin2 K2(L - z)s
2k (3)\

where k is the optical wavenumber, <£„(/£) is the spectrum of refractive index fluctuations, 
L is path length, J0 is the zero-order Bessel function of the first kind, and 5 is a geometry 
factor that is unity for a plane wave and z/L for a spherical wave. In Eq. (3), isotropic, ho
mogeneous turbulence is implicitly assumed. The case where turbulence strength is a 
slowly varying function of position will also be discussed.

2.1.1 Plane wave, small inner scale
For plane-wave propagation, 5 = 1. For a very small value of the inner scale of turbu

lence, [4 < < (L/k)1/2], we can use the Kolmogorov spectrum16

<t>n(K) = 0.033 C\ K"11/3 , (4)

where C2 is the refractive turbulence structure parameter. These two conditions imply

CAq) = (0.033)16^2C2 f dK K~8/3 f^dz J0(Kg) sin^^^J . (5)

If we let g = 0, we can easily evaluate the integrals to obtain

C/(0) = 1.23 A;776 L1176 C2 . (6)
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The aperture-averaging factor is therefore

A = 21.6 k5'6 L"11/6 f dKK-V3[Ldz sin2Jo Jo

x / dy y ^(ATtyXcos-1 y-y(l -y2)1/2] .

K\L-z)
2k (7)

We note that they integral is given by n j\(KD/2)/K2D2 and let u = AZ>/2. After some 
manipulation we obtain

du m"14/3 J\(u) 1

which is a function only of (kD2/4L)^2 , the ratio of the aperture radius D/2 to the Fres
nel zone size (L/k)1^2. This function is plotted as a solid line in Fig. 1.

If we let v = 4Lu2/kD2, we can rewrite Eq. (8) as

For small aperture diameter (kD2/4L << 1), we note that Ji(a) ~ Vi a over most of 
the integration range of interest. We can then perform the integral in Eq. (9) to get 
A = 1 for small apertures. This, of course, is what we would expect.

For a large aperture (kD2/4L > > 1), we note that the argument of the sine function 
in Eq. (8) will generally be small. Therefore, we note that sin a a - a3/6 for small a 
and

A * f0du w_2/3 = °-932(^"j • (10>

Note that the variance decreases faster than D~2with increasing aperture size. AD-2 de
pendence is what one would expect for a collection of perfectly coherent areas on the de
tector that are mutually independent. The faster D~v3 dependence is due to the small 
angle of turbulent scattering. Light propagating toward the center of the receiver is un
likely to be scattered by an angle large enough to miss the receiver entirely. This implies 
that the correlation function of irradiance fluctuations goes negative at some separation, 
since areas near the center are likely to be brighter than average when the center is dark
er, and vice versa. To generalize, it seems a correlation function that goes negative can 
produce an aperture-averaging factor that falls off faster than D~2 for large apertures.

Following previous authors,6’9,14 we use the interpolation formula

3
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Figure 1. Aperture-averaging factor A vs. ratio of aperture radius Dl2 to Fresnel zone
size (L/A:)1/2 for plane-wave propagation through weak turbulence with small inner
scale. The solid line is the exact formula, and the dashed line is the recommended
approximation.
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A = (11)
7/6 -1

1 + 1.07

This function is plotted as a dashed line in Fig. 1. The agreement is generally very good, 
although the approximation of Eq. (11) is somewhat lower than the exact formula of Eq. 
(8) for kD2/AL values near unity (17% low at 1). Fried6 has attempted to improve the fit 
in this area with an additional (fcZ)2/4L)7/12 term that was fitted empirically. However, this 
is difficult to generalize and we prefer Eq. (11) despite its shortcomings.

If turbulence is not homogeneous, Eq. (11) needs to be modified. We assume that C2 
is a function of position z along the path, but that it is nearly constant over distances less 
than the aperture diameter in any direction perpendicular to propagation (e.g., across the 
beam). In this case, we can replace C1 in Eq. (5) by Cl(z), which must be moved into the 
z integral. From there we see that

C?(0) = 1.23 k7'6 Ln/6 dx( 1 -x)5/6 Cl(xL) (12)

It is also straightforward to show that

7/6 |-1

1 + 1.07 Cl (13)

where

fdx( 1 -x)2 C%(xL)
(14)

0

fdx(l -*)5/6 C2„(xL)

where C%(L) is the turbulence strength at the receiver.

2.1.2 Plane wave, large inner scale
For very large inner scale [/q > > (L/k)1^2], we can use the Thtarskii spectrum16

<t>n(K) = 0.033 Cl K_11/3 exp(- 0.0285 K2£q) . (15)
This implies that

Clie) = (0.033)16it2 k2 C2 f dK K-^expf- 0.0285 K2 t\)

,2 K2(L-z)

(16)
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We note that the argument of the sine function will be small over most of the range of 
the integral so that we can let the sine equal its argument. This allows the z integral to be 
evaluated, with the result

A OO
Cfa) = (0.033) L3 Cl JdK K*/3Jo(KQ)exp(- 0.0285/^) . (17)

3 0

Letting g -* 0, we have
C/(0) = 12.8 L3 C2„ fo/3 .

The aperture-averaging factor is

J^du u~2/3 J\(u) expf -0.1141 | . (18)
_7/3 r°° / l2 u2\

This is plotted as a function of D/Iq as a solid line in Fig. 2. Note that as D gets very 
large the exponential in Eq. (18) goes to unity, and the integral can be evaluated to get

A = 0.453 (19)

This leads to the approximate formula

1 + 2.21

This is plotted as a dashed line in Fig. 2. As in Fig. 1, Fig. 2 shows fairly good agreement 
between the exact and the approximate formulas. The worst agreement is near D/Iq = 1, 
with an error of about 34% at that point. This is somewhat worse than the small-inner- 
scale case.

The Tatarskii spectrum was used in the above calculations because of its simplicity. 
Actually, the more rigorous Hill spectrum17,18 should be used. It can be approximated

<&n(K) = 0.033 Cl K'11/3 { exp (- 1.29 K2 /§) 

+ 1.45 exp [-0.97 (In K /q-0.452)2]} .
(21)

The aperture-averaging factor was recalculated for this case using the approximate Hill 
spectrum. The numerical results are plotted as discrete points in Fig. 2. We see that the 
Tatarskii spectrum results are very close to the Hill spectrum results. Where the largest 
discrepancies exist, near D/to, our approximate formula foryl of Eq. (20) is closer to the 
more-precise Hill spectrum values than to the Tatarskii spectrum values. Hence, we feel 
justified in using the Tatarskii spectrum to develop Eq. (20).

6



D//0

Figure 2. Aperture-averaging factor A vs. ratio of aperture diameter D to inner scale
A) for plane-wave propagation through weak turbulence with large inner scale. The
solid line is the exact formula using the Tatarskii spectrum, the points are exact val
ues using the Hill spectrum, and the dashed line is the recommended approximation.
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We can also evaluate the case where C2 and (q are functions of path position. It is 
straightforward to show that this leads to

C^O) = 38.3 L3fdx( 1 -x)2 C2„(xL) Cj%L) , (22)

0
and

A * [1 + 2.21 C D7/3]-1 , (23)

where
fdx(i -x)2 C2(xL) Cq^(xL)

C = _S . CM)
f dx( 1 -x)2 C2n(xL)

0
Note that if (q is constant, the aperture-averaging factor is independent of the distribution 
of C2 along the path.

There remains the question of what to do when the inner scale and the Fresnel zone 
are of the same order. We note that Eqs. (11) and (20) are equal when (q = 2.73(L/fc)1/2. 
We therefore recommend using the small-inner-scale result when £q < 2.73(L/k)1^2 and 
the large-inner-scale results when /o > 2.73(L/k)1^2. In Fig. 3, we plotted this approxi
mation and the exact values using the Hill spectrum as functions of the ratio of the inner 
scale to the Fresnel zone for D/to = 10 and for (kD2/AL)1/2 = 10. We see that for these 
two cases there is reasonable agreement between the simple approximation and the exact 
values.

2.1.3 Spherical wave, small inner scale
For spherical wave propagation, s = z/L. For small inner scale,

Ci{q) = (0.033)167i2k2C2J^dK K~^3 J^dz 
(25)

Letting q = 0 produces

C/(0) = 0.497 k1'6 L11/6 C2 . (26)

The aperture-averaging factor is
A = 53.4 ks!<’ I. n/6JpK KrW^dz sin2 j

xf0<tyy •,0f^7"Vos 1 -y2)1121 •
(27)

8



Figure 3. Aperture-averaging factor A vs. ratio of inner scale /<> to Fresnel zone size 
(LIK)112 for plane-wave propagation with aperture size as labeled. The solid lines are 
the exact formula using the Hill spectrum, and the dashed lines are the approximate 
values.

9



We can evaluate the y-integral as before. We also let u = DzK/2L and x — z/L. After 
some manipulation,

A = 41.9 du iT14/3 J\(u) J dx (28)

This is plotted as the solid line in Fig. 4.
For large D, the sine function can be replaced by its argument and the integrals can 

be evaluated analytically. This leads to the approximation

1 + 0.214 (29)

which is plotted as a dashed line in Fig. 3. Once again we see reasonable agreement, al
though not as good as for the plane-wave case for D/2 near (k/L)1^2. At D/2 equal to two 
Fresnel zones, the approximation is nearly a factor of 2 (86%) high.

For inhomogeneous turbulence,

Cj(0) = 0.497/c7/6 L11/6 fdxx5/6 (1 -x)5/6C2(xL) , 
0

(30)

where T is the gamma function. The ratio T(ll/3)/r2(ll/6) = 4.53. The aperture
averaging function is given by

A = 1 + 0.214 C (31)

where

(32)

In this equation, 2r(2/3)/T2(ll/6) = 3.06.

10



< 10

Figure 4. Aperture-averaging factor^ vs. ratio of aperture radius DU to Fresnel zone
size (LIK)l,i for spherical-wave propagation through weak turbulence with small in
ner scale. The solid line is the exact formula, and the dashed line is the recom
mended approximation.
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2.1.4 Spherical wave, large inner scale 
For the Tatarskii spectrum,

Cj(q) = (0.033)16j?k2 C2n JdK.OO  K*^exp(- 0.0285/^)
0

(33)
x jf ffe/o^^jsin2 K2z(L-z)

2kL

Here also, we can approximate the sine function by its argument so that 

l \ 0 0-(¥)■ (34)

CXe) = (0.033)4^ Cl L~2f°dK ^/3exp(- 0.0285^) fdz z\L-z)2

The variance is
C/(0) = 1.28 L3 C2 £7/3 . (35)

The aperture-averaging function is

A = 20.6^) Jdu u~2/}j](u) f^dx x-1/3(l-x)2 exp^-O.lM^jj ,
(36)

where u = z D k/2L and x = z/L. This function is plotted as a solid line in Fig. 5. For 
large D/l0, the exponential in Eq. (36) is nearly unity and the remaining integrals can be 
evaluated. As before, this leads to an approximation for the aperture averaging, given in 
this case by

A = 1 + 0.109
-1

5
(37)

which is plotted as the dashed line in Fig. 5. Again we see that the approximate formula 
is not as good for spherical-wave propagation as it is for plane-wave propagation, espe
cially near the shoulder of the curve. In this case, the approximation is slightly more than 
a factor of 2 (118%) too high for D/2 = (q .

The exact values were also calculated using the Hill spectrum. No significant differ
ence between the Tatarskii-spectrum values and the Hill-spectrum values was observed, 
and these points are not in the figure.

For nonhomogeneous turbulence, it is straightforward to show that

C/(0) = 38.3 L3 fdxx2 (1 -x)2C2(xL) £oV\xL) . (38)
Jo

12
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Figure 5. Aperture-averaging factor A vs. ratio of aperture diameter D to inner scale
4> for spherical-wave propagation through weak turbulence with large inner scale.
The solid line is the exact formula, and the dashed line is the recommended approxi
mation.
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The aperture-averaging factor is given by

(39)A = [1 + 0.109 C D7/3]-1 ,

where
fdx x\\ -xf C„(xL) toV\xL) 

c _ _2_________________________ (40)
f1 dx x2(l -x)2 C2(xL)

J0

For spherical-wave propagation, the small-inner-scale approximation [Eq. (29)] and 
the large-inner-scale approximation [Eq. (37)] are equal for (q equal 1.5 times the Fres
nel zone. Therefore, we recommend using the small-inner-scale approximation for 
(q < 1.50(L/k)1/2 and the large-inner-scale approximation for/0 > 1.50(L/k)1^2 .

2.2 Strong TUrbulence
The strong-turbulence regime is defined as the case where the transverse coherence 

length of the field in the receiver plane is much smaller than the Fresnel zone. In this 
case, the covariance contains two scales. A small-scale peak with a width of about the co
herence length accounts for (of + l)/2 of the covariance, where of is the total irradiance 
variance. The rest is contained in a long tail with a width of about the scattering disk size. 
The shape of the covariance is strongly affected by multiple scattering, and analysis is 
much more difficult than for the weak-scattering case.

Perhaps the asymptotic theory is the best available. For a pure power-law spectrum, 
this theory has been developed for plane-wave20 and spherical-wave21 propagation, and 
these results are reviewed in Ref. 22. Inner-scale effects have been included in more re
cent work.23,24 The covariance function typically used is the sum of three terms of a 
series expansion.

2.2.1 Plane wave, small inner scale
The asymptotic formula for the covariance function in this case is22

Ci(e) = exp [61(e)+62(e» (41)
y/3

where po is the transverse coherence length calculated using geometrical optics for plane- 
wave propagation:

go = (1.46 k2 L Cl)~3/5 . (42)

N3 is a constant given by

14



where r represents the gamma function and 2F1 the confluent hypergeometric func
tion.25 The two functions b\ and b2 are functions of p that go to unity as p goes to zero, 
and to zero as q goes to infinity. b\ is given by

dx x4/3 J0(k g qq x/L) . (44)

The other function, bi, is much more complex. We do know that it is a correction to the 
first term that depends only on the ratio p/p0 and that it has a characteristic scale size of 
about po • We will assume that 62 can be reasonably approximated by

b2 = exp (45)

The variance of irradiance is therefore given byre n oy

Oj — C0) = 1 + 1
1/3

(46)

The aperture-averaging factor is the sum of two terms

/ dy y [cos-1 y -y (1 -y2)1/2] exp
0 . \(*7.

(47)
^y/3'

and
 = 56Z-2 °/~1 4 -2/3 12 

2 3k2D2gl 2oj Jf X h { 2L )' (48)
(kDQ(fc\Ay

The aperture-averaging factor^ = A\ + A2 is plotted as a function ofD/2g0 for sev
eral values of a2 in Fig. 6. In all cases, the effects of the two scale sizes are evident. Since 
variance decreases with increasing turbulence strength in this regime, the weakest turbu
lence case presented is the one with the largest variance, oj = 1.75. This value corre
sponds to a ratio of Fresnel zone size to p0 of 2.07 from Eq. (46). The scattering disk 
L/kgo is therefore 4.3po for this case. The figure clearly shows the averaging of the p0 
scale, a shoulder, and then a second rolloff about a factor of 4.3 higher. Note also that 
there is less aperture averaging (e.g., A is higher) than the weak-turbulence theory would 
predict for this case where(L/k)V2 = 2.07p0. As an example, we see that£>/2p0 = 10 
implies that .A = 0.109. The corresponding low-turbulence theory point would be 
(kD2/4L)^2 = 4.83. Weak-turbulence theory would predict A = 0.0231, which is much 
lower than the actual value.

For of = 1.5, the Fresnel zone size is about 3.81 po and the weak-turbulence theory is 
even worse. The two scales, po and scattering disk, differ by a factor of 14.5 in this case. 
The greater separation is evident in Fig. 6.

Finally, the strongest-turbulence case, with oj = 1.25, has a Fresnel zone size that is 
10.8 po . The two scales are separated by a factor of 116. Also note that as turbulence

15



Figure 6. Aperture-averaging factor A vs. ratio of aperture radius D/2 to phase co
herence length £o for plane-wave propagation through strong turbulence with small
inner scale and three different values of irradiance variance af. The solid lines are
the exact results, and the dashed lines represent the recommended approximation.
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gets stronger, the plateau between the two scale sizes gets lower. In the asymptotic limit, 
0/ goes to unity and only the go scale remains. However, unrealizable turbulence levels 
are required for this to occur.

For very small D, the exponential in the first term is nearly always unity, and we have

Ai-
2(jf

(49)
of + 1

For very large D, the integrand will be nearly zero except for very small values ofy. Thus, 
we can evaluate the integral to get

- (50)

As before, we recommend the approximation

A i (51)

Note that this term does go as the inverse square of aperture diameter. This is a direct 
result of the corresponding correlation function being always positive.

For small D, we use the approximationJi(a) « —a and get

 °/ ± 1 

2" 2dj (52)A} -

For large D, j\ (kgo Dx/2L) is nearly zero by the time x = 1. Therefore, we can extend 
the upper limit of integration from 1 to infinity without introducing appreciable error. 
This integral can be evaluated with the result

(53)

and we have the approximation

-«(¥)TA2^
(54)

Summing^! and^42 yields

A = "'V 1 + 0.9081'? yi ■‘ + 4-1 1 + 0.162^fkQoD\V3' (55)
2 Oj \ iQt) _ 2dj l2L) J

which is plotted in Fig. 6 along with the exact theory. We note very good agreement be
tween the approximation and the exact values over the entire range of aperture diameters 
considered.

17



Evaluation of the correlation function for the case where C% varies along the path is 
extremely difficult in strong turbulence, and the aperture-averaging factor could not be 
obtained. We note that the phase coherence length in this case is

0o =
.46 k2fdz C„(z)] 3/5 . (56)

Using this in Eq. (55) may produce reasonable approximations, although this is merely 
conjecture.

2.2.2 Plane wave, large inner scale
If the inner scale is much larger than the coherence length, but much smaller than the

scattering disk, the asymptotic theory yields 'yx

Ci(Q) = exP (57)

where

0o = (i.2o k1 c:2 l r0'/3y'/2, (58)

and N3 = 1.21. The function bi(g) is given by

bi(e) = 0.897 ( | ' f dr x2 fdKK4/3

\kQo) o Jo exp
l-|r |[/o(/fe) . (59)

The other function b\ is again an extremely complex function. As before, we will assume

,2
b2(o) = exp (i (60)

The variance of irradiance is given by

02 = , + !.21 • (61)

The aperture-averaging factor is again the sum of two terms

Ai = /dyMcos-V-Kl-/)1/2]exp[-(Cy/eo)2] . (62)

and

18



(63)

A ■ >» {&)'"' tr ■*«•>

x exp

The total aperture-averaging factor/! = Ax + A2 is plotted as a solid line in Fig. 7 for 
several values of cij and for the special case of t0 = 10p0 .

For very small D, the exponential in Eq. (62) is nearly always unity and we have
A. _ °?+1 

1 2of • (64)

For very large D, cos_1y-y(l -y2)l/2 can be approximated by its value aty = 0, which i: 
isn/2. The integral can then be evaluated to yield

= Qf + l^goV 

2 of \ D ) ’ (65)

and we have the approximation

A, = °?+1

20/
1 +

(jlY-
[2 Q0) (66)

For small D, we can use the approximation J^a) * -a in Eq. (63), and we get
2

A 2
_ o?-l

2of • <67>

For large D, the exponential in Eq. (63) can be approximated by one, which leads to

2 L \7/3
A 2 “ ^[°-790(

&po£> y (68)

so that we have the approximation

loj

1 + 1.27^]. 7/3

(69)7 J
Therefore,

/l =
. °/ + 1

2o/
1 +

f—V
\2eo J

1 + 1.27^-j7/3

2 cij (70)

This is plotted as a dashed line in Fig. 7. As before, agreement is very good.
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Figure 7. Aperture-averaging factor ,4 vs. ratio of aperture radius D/2 to phase
coherence length^ for plane-wave propagation through strong turbulence withtq =
10 Q) and three different values of irradiance variance cr*. The solid lines are the ex
act results, and the dashed lines represent the recommended approximation.
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If the inner scale is yet larger (much larger than the scattering disk), the variance of 
irradiance can be approximated by

L 2
oj = 1 + 10.6U-Y

\kQo?Q J (71)

A i is still given by Eq. (62). However, A2 becomes

l^(L20)(^) fQ d“ “~2/3 e*P -0.0285^j«=
(72)

in this limit. It is clear that the limits of this equation for small and large D values are the 
same as Eq. (63) and the approximate aperture-averaging factor is still given by Eq. (70). 

If turbulence is not constant along the path, we note that po is given by

(?o = [l.20 k2 ft Cj(zV51/3(z)l"1/2 . (73)

and this value can be used in the previous equations. How well this represents the actual 
values remains a subject for further study.

2.2.3  Spherical wave, small inner scale
The covariance function for this case can be expressed in the same form as the plane- 

wave, small-inner-scale case, given in Eq. (41).22 However, we have here

Po = (0.545 k2 L C2)~y5 , (74)

and

N* =_ 3(2)8/3
5jt

(75)

The function b\ is given by 21

h(e) = 0.915 fdx *-‘/3(l -xffdz ^%\ )exp(- r^l -rf/3] . (76)

0 o \ L J
As before, the function b2 is extremely difficult to evaluate, and we will assume that it has 
the form

b2(e) = exp •(»)" (77)

The variance of irradiance is given by

oj = 1 + 3“(¥)" ■ (78)
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The aperture-averaging factor is the sum of

dy y[cos"V -y(l -y2)1/2]exp (79)

and

A2 = 3.66^-^) 

\kDgo )
dx jc2(1 -x) 1//3

5/3
m5/3 ^5/3 .

The aperture-averaging factor A = A\ + A2 is plotted as a solid line in Fig. 8 for sev
eral values of the irradiance variance of. Qualitatively, these curves are very similar to the 
plane-wave case. The two scales do tend to be more widely separated in spherical-wave 
propagation than in plane-wave propagation.

The limits can be found for large and small apertures in the same manner as before. 
This leads to the recommended approximation

This is plotted as a dashed line in Fig. 8. Once again, the approximation is good. Howev
er, as in the weak-turbulence cases, the approximation for spherical-wave propagation is 
not as good as for plane-wave propagation for apertures near the Fresnel zone.

2.2.4 Spherical wave, large inner scale
We first treat the case where the inner scale is much larger than the coherence length 

but much smaller than the scattering disk. For this case, the asymptotic theory expression 
for the covariance can be written in the same form as the plane-wave equivalent of Eq. 
(57). However, here we have

= (0.545 k2 C2 L f01/3)~1/2 , (82)

and N3 = 1.13. The function b is given by

dx x\\ -x)2 f dK X4/3 exp £V(1 -x)2 h(Kxg) . (83)bx(g) = 1.05

We will again assume
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Figure 8. Aperture-averaging factor A vs. ratio of aperture radius D/2 to phase
coherence length^ for spherical-wave propagation through strong turbulence and
three different values of irradiance variance cr2. The solid lines are the exact results,
and the dashed lines represent the recommended approximation.
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Hq) = exp
(84)

The variance of irradiance in this approximation is given by

erf = 1 + 2.
>.27^

*£0?0 V/3 (85)

The aperture-averaging factor is the sum of the two terms
A1 = — --V / dy y [cos'1 y y (1 -y2)1/2] exp - i-, 

ji 2of Jo \ \ Qo /
(86)

and

A>- 4-20(^)73 *2(1 ~xTin idu U'2PJ2'{U)

x exp; (^) "2
(87)

The total aperture-averaging factor .4 = yli + A2 is plotted as a solid line in Fig. 9 for 
several values of erf and for the special case of £q = 10po •

The limits of large and small aperture diameter can be taken as in the plane-wave 
case. These lead to an approximation for the aperture-averaging factor of

1 + 0.534

This function is plotted as a dashed line in Fig. 9.
If the inner scale is much larger than the scattering disk, the variance is given by

of = 1 + 2.34| —J .
1 \kQol0 )

A\ is still given by Eq. (87). However, A2becomes

(Jdx x2(l -jc)_1/3 Jdu u 2/3Jf(u) 
y/cDgo] 26} { K ' JoA2 = 4.20

x exp -0.0285

This has the same limits as Eq. (87) and the approximate formula is still given by Eq.
(88).
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1.75 \ \

Figure 9. Aperture-averaging factor A vs. ratio of aperture radius D/2 to phase
coherence lengthy for spherical-wave propagation through strong turbulence with
'o = 1009 and three different values of irradiance variance o*. The solid lines are the
exact results, and the dashed lines represent the recommended approximation.
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3. EXPERIMENT
A series of experiments was performed to verify some of these relationships. Not all 

parameter regimes were possible, but an attempt was made to investigate as many as pos
sible. The experiments involved propagating a laser transmitter over some distance 
through the turbulent atmosphere and detecting the light with a variety of aperture sizes.

The transmitter laser was a 10-mW HeNe laser operating in single mode at 633 nm. 
When the path length was 1 km, the 1.2-mrad beam divergence of the laser was used di
rectly. When shorter paths were used, a negative lens was placed in front of the laser so 
that the beam at the receiver had a diameter of about 1 m. An electromechanical shutter 
was placed in front of the lens. This shutter could be controlled from the receiver end of 
the path by a radio link.

Paths of 100, 250, 500, and 1000 m were used. All were at a height of about 1.5 m 
over flat, uniform grassland at the Commerce Department’s Thble Mountain facility north 
of Boulder, Colorado. TUrbulence strength and inner scale were measured using optical 
instrumentation. C„ was measured over a 500-m path, using an incoherent scintillometer 
described in Ref. 26. Inner scale was measured over a 150-m path, using a scintillation 
technique described in Ref. 27. The path lengths for both instruments were chosen to 
provide optimum measurements. Because of the uniformity of the terrain, we assume that 
these values are representative of the values along the actual propagation paths.

The receiver is an array of six apertures with diameters of 1, 2.25, 5, 10, 25, and 
50 mm. The light passing through each aperture is detected by a photodiode; except for 
the smallest aperture, a lens is used to collect the light. Each photodiode is connected to 
a transimpedance amplifier. The gain of each amplifier is inversely proportional to aper
ture area so that the output signal levels are roughly equivalent. The bandwidth of each 
amplifier is set at about 5 kHz. The outputs are further amplified and fed to the A/D con
verter on a personal computer.

The computer software first samples the six detector channels sequentially, with a 
delay of 36 ps between channels. This sampling is repeated 30,000 times at 500 repeti
tions per second, which means that each channel is sampled at 500 Hz for 1 min. Then, 
the computer samples the current values of Cl and (q from those instruments. Next, a ra
dio signal is sent from the computer to the transmitter to close the shutter, and the detec
tor channels are sampled for 0.6 s (300 samples/channel) to obtain background levels.
The collected data are stored on the computer’s disk, a signal is sent to open the shutter, 
and the entire cycle is repeated. A typical data run consisted of 25 of these cycles and 
took about 30 min. Data were stored on magnetic tape for later processing.

The data were processed one cycle at a time. First the mean background level was 
found for each aperture. Then this level was subtracted from each of the data points, and 
the mean and variance of the result were calculated. The variance was then normalized by 
the square of the mean. Finally, the aperture-averaging factor was estimated by assuming 
that the 1-ram aperture provided a fair representation of the unaveraged variance and by 
dividing the normalized variance from each of the other apertures by this value.
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3.1 Weak Turbulence Results
The first data run we consider was obtained over a propagation path of 100 m. Turbu

lence strength was moderate, with C\ = 5.19 ± 1.54 x 10'14m~2/3 . The normalized vari
ance of irradiance measured using the 1-mm aperture was 7.21 ± 1.47 x 10~3, and we 
are clearly in the weak turbulence regime. Reported uncertainties and error bars repre
sent the standard deviation of the values from the 25 cycles that make up each data run. 
They should be interpreted as variations in atmospheric conditions rather than as mea
surement errors. The 100-m path length implies a Fresnel zone size of (L/k)1/2 =
3.17 mm. The measured inner scale was /0 = 6.26 ± 0.38mm. Since £0 > 1.5(L/k)1/2, the 
large-inner-scale theory is appropriate for these data. The measured aperture-averaging 
factor >1 is plotted as a function of D/lo, including error bars on^4 and on D/lo, in Fig.
10. The approximate theory for spherical wave propagation through weak turbulence with 
large inner scale (37) is plotted as a solid line in the figure. We see very good agreement 
between the approximate theory and the measured values.

The next data to consider were taken at 250 m with a turbulence level of 1.12 ±
0.43 x 10'13m“2/3 . The variance for the 1-mm aperture was 6.81 ± 4.47 x 10~2, and we 
are still in the weak turbulence regime. The Fresnel zone size for this case is 5.02 mm. 
The measured inner scale was 7.54 ± 1.22 mm, and the average value of/0 * 1.5(L/k)V2. 
Fig. 11 presents the data for this case along with the spherical wave, weak turbulence, lar
ge-inner-scale theory of Eq. (37). Again we see good agreement between theory and data. 
Fig. 12 presents the same data, plotted as a function of (kD2/4L)l/1. Note that the Fres
nel zone is independent of atmospheric conditions, and only vertical error bars are pres
ented in this figure. The solid line in this case is the approximate theory for spherical 
wave propagation through weak turbulence with a small inner scale (29). We see that the 
agreement is almost identical to that of Fig. 11, supporting our conjecture that either 
theory can be used when £q = 1.5(L/k)^2.

The data for Fig. 13 were taken at 500 m. C2 was 1.46 ± 1.18 x 10"13 m_2/3 . The 
1-mm aperture variance for this case was 0.644 ± 0.348 and we are still in weak turbu
lence, although the margin is smaller than in the previous cases. The Fresnel zone size is 
7.10 mm. The inner scale, 7.19 ± 0.90 mm, is about the same size and is thus less than 
1.5(L/k)1/2. Therefore, the data are plotted as a function of (kD2/4L)^2 and the small-in
ner-scale theory of Eq. (29) is used for comparison. Again we see good agreement be
tween theory and experiment.

These results show that the approximate formulas provide good agreement to mea
sured values for the aperture-averaging factor of a spherical wave in weak turbulence. 
Generally, the approximate formulas were somewhat higher than the data near the knee 
of the wave. This is consistent with the theoretical finding that the approximation was 
above the exact calculation in this area. The notable exception to this generalization was 
the 250-m data run presented here. We suspect that the assumption of uniformity was vio
lated during this run because of clouds over part of the sky, and the value for £0 along the 
path was greater than the measured value. Despite this, agreement between the data and 
theory was good.
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Figure 10. Aperture-averaging factor A vs. ratio of aperture diameter D to inner
scale (q. The points represent data taken at 100 m, and the curve is the approximate
formula for a spherical wave, weak turbulence, and large (q.
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Figure 11. Aperture-averaging factor A vs. ratio of aperture diameter D to inner
scale (q. The points represent data taken at 250 m, and the curve is the approximate
formula for a spherical wave, weak turbulence, and large (q.
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Figure 12. Aperture-averaging factor A vs. ratio of aperture radius Dl2 to Fresnel
zone size (Llk)1/2. The points represent data taken at 250 m, and the curve is the ap
proximate formula for a spherical wave, weak turbulence, and small fy.
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Figure 13. Aperture-averaging factor A vs. ratio of aperture radius D/2 to Fresnel
zone size (Llk)l/2. The points represent data taken at 500 m, and the curve is the ap
proximate formula for a spherical wave, weak turbulence, and small fy.
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3.2 Strong Turbulence Results
Data to investigate the strong path-integrated turbulence regime were collected over a 

1000-m path. In the first case, the turbulence strength was C2 = 4.20 ± 0.33 
x 10-13 m"2/3. The inner scale tQ = 5.98 ± 0.35 mm, which was larger than the coher
ence length of po = 2.84 ±0.11 mm, The Fresnel zone size of (L/k)1/2 = 10.0 mm was 
also larger than po > and this case is in strong turbulence.

The measured values for A, with error bars, are plotted as a function of D/2qq in Fig. 
14. The solid line represents the strong turbulence theory of Eq. (81). We see that the ap
erture-averaging factor does not drop off as fast as the strong-turbulence theory would 
predict. The data also do not show the clear separation of scales predicted by the asymp
totic theory. We conclude that the complete separation of scales predicted by the asymp
totic theory has not occurred at the turbulence level of this data run. This is not too sur
prising because the asymptotic theory assumes that the variance of irradiance is 1 plus a 
small perturbation term. The measured variance of the 1-mm aperture, 3.15 ± 0.24, does 
not satisfy this condition.

The approximate weak-turbulence theory is given as a dashed line in Fig. 14. The 
asymptotic theory is a better approximation to the data than the weak-turbulence theory. 
This data run is in the transition regime between the single-scale size of weak turbulence 
theory and the two completely separated scale sizes of the asymptotic theory; neither pro
vides an exact description of the data. This is particularly true since our data are in the 
vicinity of the scales of interest. We expect that very large apertures would produce aper
ture-averaging factors very near the asymptotic theory values. Unfortunately, apertures of 
this size were not available.

Fig. 15 presents the results of a similar run under conditions of higher turbulence. In 
this case, we had C2 — 1-29 ± 0.39 x 10-12m-2/3, (q = 7.57 ± 0.55 mm, q 0 = 1.74 ± 
0.24 mm, and the variance from the 1-mm aperture was 3.08 ± 0.38. The irradiance vari
ance decreases very slowly with increasing turbulence strength for spherical wave propa
gation,18 and extreme conditions are required for the asymptotic theory to be valid. De
spite this, reasonable agreement with the measured aperture-averaging factors are 
obtained, as seen in Fig. 15.

4. PROBABILITY DENSITY FUNCTIONS
The other quantity of interest is the probability density function of the fluctuations of 

the received power. We expect that these fluctuations will be nearly log normal in weak 
path-integrated turbulence for any aperture size and in strong path-integrated turbulence 
for large apertures. These expectations are investigated in this section.

The measured probability histogram of the data taken through a 1-mm aperture at a 
distance of 100 m is plotted as a function of signal S in Fig. 16. The smooth curve is a 
log-normal density function with the same variance (c§ = 7.21 x 10-3). The log-normal

32



11111

Figure 14. Aperture-averaging factor A vs. ratio of aperture radius DU to coherence
length Qq. The points represent data taken an 1000 m, the solid curve is the strong-
turbulence approximation, and the dashed curve is the weak-turbulence approximation.
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Figure 15. Aperture-averaging factor A vs. ratio of aperture radius DU to coherence
length £0* The points represent data taken an 1000 m, the solid curve is the strong-
turbulence approximation, and the dashed curve is the weak-turbulence approximation.
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Figure 16. Plot of the probability density function p of the signal power S for data taken
through a 1-mm-diameter aperture at a distance of 100 m. The stepped curve is a histo
gram of the data, and the smooth curve is a log-normal density function with the same
variance.
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formula is

\[2tc Oe„S
(91)

where the variance of the logarithm crj;n is related to the variance of the signal 
by

°s = exp (o?„)-1 • (92)

Clearly, the data in Fig. 16 are log normal. In fact, all the data taken at the 100-m path 
length were log normal.

Fig. 17 presents the data taken through the 5-cm aperture, which is typical of the lar- 
ger-aperture data.

At a path length of 250 m, the data begin to deviate slightly from log normal. The 
data taken through the 1-mm-diameter aperture, presented in Fig. 18, show the most de
viation. The most notable difference is the height of the peak probability; the histogram 
is about 13% above the value predicted by the log normal. The variance for this case was 
6.81 x 10~2, and we should still be in the weak-turbulence regime.

Qualitatively, the deviations from log normal are the same as those caused by nonsta- 
tionarity of turbulence as explained in Ref. 28. The standard deviation of the variance for 
this case was 66% of the mean value. Therefore, we conclude that deviations from log 
normal for this case are probably caused by nonstationarity of turbulence. For compari
son, the standard deviation of the variance of the case of Fig. 16, which was much more 
nearly log normal, was only 20% of the mean value. As the aperture diameter was in
creased, the data became more nearly log normal.

The best fit was obtained for the 5-cm aperture; these data are presented in Fig. 19. 
The effects of nonstationarity can still be seen, but they have been partially mitigated by 
aperture averaging.

At a path length of 500 m, the data are deviating from log normal because of satura
tion effects. Fig. 20 shows the data taken through the 1-mm aperture. The variance for 
this case was 0.644, and some effects of saturation are expected. Differences between the 
data and the log normal, though not terribly large, are clear in the figure. As the aperture 
diameter increases, the data become more log normal.

Fig. 21 shows the data taken through the 5-cm-diameter aperture; these data are 
much more nearly log normal.

At the 1-km path length, the deviation from log normal is significant, but still not ex
treme. Fig. 22 presents the data from the 1-mm aperture. The variance for this case was 
3.15, and we are well out of the weak path-integrated turbulence regime. Despite this, the 
log-normal density function may still be a reasonable approximation for some applica
tions. As before, larger apertures produce signals that are more nearly log normal.

Fig. 23 presents data taken through a 1-cm aperture. The improvement is clear, al
though the data are not purely log normal.
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Figure 17. Plot of the probability density function p of the signal power S for data taken
through a 5-cm-diameter aperture at a distance of 100 m. The stepped curve is a histo
gram of the data, and the smooth curve is a log-normal density function with the same
variance.
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Figure 18. Plot of the probability density function p of the signal power S for data taken
through a 1-mm-diameter aperture at a distance of 250 m. The stepped curve is a histo
gram of the data, and the smooth curve is a log-normal density function with the same
variance.
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Figure 19. Plot of the probability density function p of the signal power S for data taken
through a 5-cm-diameter aperture at a distance of 250 m. The stepped curve is a histo
gram of the data, and the smooth curve is a log-normal density function with the same
variance.
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Figure 20. Plot of the probability density function p of the signal power S for data taken
through a 1-cm-diameter aperture at a distance of 500 m. The stepped curve is a histo
gram of the data, and the smooth curve is a log-normal density function with the same
variance. ®
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Figure 21. Plot of the probability density function p of the signal power S for data taken
through a 5-cm-diameter aperture at a distance of 500 m. The stepped curve is a histo
gram of the data, and the smooth curve is a log-normal density function with the same
variance.
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Figure 22. Plot of the probability density function p of the signal power S for data taken
through a 1-mm-diameter aperture at a distance of 1 km. The stepped curve is a histo
gram of the data, and the smooth curve is a log-normal density function with the same
variance.
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Figure 23. Plot of the probability density function p of the signal power S for data taken
through a 1-cm-diameter aperture at a distance of 1 km. The stepped curve is a histo
gram of the data, and the smooth curve is a log-normal density function with the same
variance.
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Density function data at higher values of path-integrated turbulence are presented and 
compared with the log-normal density function in Ref. 29. These data are not repeated 
here. However, based on both data sets, we conclude that the log-normal probability den
sity function is valid in stationary, weak turbulence and in strong turbulence for apertures 
larger than about three times the phase coherence length g 0 . Under other conditions, 
the log-normal density function is not as good, although it may be a sufficient approxima
tion in many cases. The worst agreement is at small signal levels for small apertures in 
strong turbulence.

5. CONCLUSIONS
Approximate expressions have been found for the aperture-averaging factor in weak

and strong path-integrated turbulence. These simple approximations are within about a 
factor of two of exact calculations and of experimental values under all conditions that 
could be investigated. The recommended approximations are summarized in Table 1 
(plane-wave case) and Table 2 (spherical-wave case). The log-normal probability density 
function is found to be a reasonable approximation in a wide variety of circumstances.
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Table 1. Aperture-averaging factor for plane waves

Conditions Formula
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Table 2. Aperture-averaging factor for spherical waves

Conditions Formula

(kD2\V6Y
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